viernes, 29 de noviembre de 2013

DISPERSIÓN DE LA LUZ






La luz procedente de una estrella, conocida como luz blanca, es una superposición de luces de diferentes colores, las cuales presentan una longitud de onda y una frecuencia específicas. La dispersión de la luz es un fenómeno que se produce cuando un rayo de luz blanca atraviesa un medio transparente (por ejemplo un prisma) y se refracta, mostrando a la salida de éste los respectivos colores que la constituyen.
La dispersión tiene su origen en una disminución en la velocidad de propagación de la luz cuando atraviesa el medio. Debido a que el material absorbe y remite la luz cuya frecuencia es cercana a la frecuencia de oscilación natural de los electrones que están presentes en él, ésta luz se propaga un poco más despacio en comparación a luz de frecuencias distintas. Estas variaciones en la velocidad de propagación dependen del índice de refracción del material y hacen que la luz, para frecuencias diferentes, se refracte de manera diferente. En el caso de una doble refracción (como sucede en el prisma) se distinguen entonces de manera organizada los colores que componen la luz blanca: la desviación es progresiva, siendo mayor para frecuencias mayores (menores longitudes de onda); por lo tanto, la luz roja es desviada de su trayectoria original en menor medida que la luz azul.
Ejemplo:
La descomposición de la luz blanca en los diferentes colores que la componen, data del siglo XVIII, debido al físico, astrónomo y matemático Isaac Newton.
La luz blanca se descompone en estos colores principales:
·         Rojo (el color que sufre la menor desviación)
·         Anaranjado.
·         Amarillo.
·         Verde.
·         Azul.
·         Violeta  (el color que sufre la mayor desviación)
Esto demuestra que la luz blanca está constituida por la superposición de todos estos colores. Cada uno de los cuales sufre una desviación distinta ya que el índice de refracción de, por ejemplo, el vidrio es diferente para cada uno de los colores.
Si la luz de un color específico, proveniente del espectro de la luz blanca, atravesara un prisma, esta no se descompondría en otros colores ya que cada color que compone el espectro es un color puro o monocromático.

INSTRUMENTOS OPTICOS

Un instrumento óptico sirve para procesar ondas de luz con el fin de mejorar una imagen para su visualización, y para analizar las ondas de luz (o fotones) para determinar propiedades características.
Los primeros instrumentos ópticos fueron telescopios utilizados para la magnificación de imágenes (distantes), y microscopios utilizados para magnificar imágenes muy pequeñas. Desde los días de Galileo y van Leeuwenhoek, estos instrumentos han sido mejorados ampliamente y se han extendido a otras porciones del espectro electromagnético.
 

jueves, 28 de noviembre de 2013

FENÓMENOS LUMINOSOS


1.Reflexión de la luz


 
 
La reflexión es el cambio de dirección de una onda magnética, que al estar en contacto con la superficie de separación entre dos medios cambiantes, de tal forma que regresa al medio inicial. Ejemplos comunes son la reflexión de la luz, el sonido y las ondas en el agua. La luz es una forma de energía. Gracias a ello puedes ver tu imagen reflejada en un espejo, en la superficie del agua o un piso muy brillante. Esto se debe a un fenómeno llamado reflexión de la luz. La reflexión ocurre cuando los rayos de luz que inciden en una superficie chocan en ella, se desvían y regresan al medio que salieron formando un ángulo igual al de la luz incidente, muy distinta a la refracción.
Así como refractar es desviar la difracción es bordear, este fenómeno, esta mas asociado, con las ondas mecánicas, de una manera más asimilable, pero las ondas electromagnéticas también presentan este fenómeno, prueba de ello es un suceso que ocurrió en un eclipse de sol, mientras se observaba una estrella, el eclipse desviaba los rayos de luz de aquella estrella emisora y daba una ubicación errónea de su ubicación, después del eclipse, en la misma noche, se volvió a mirar la estrella y esta se había movido de su anterior ubicación esto indicaba que la luz bordeaba el sol, dando la impresión de dar otra ubicación.
¿Cuáles son los fenómenos que no se pueden explicar con la teoría corpuscular de la luz? •
La interferencia, la polarización, la difracción.
Explique que concepto tenían antiguamente los físicos sobre la sustancia o medio material llamado éter •
El éter es una sustancia hipotética que se usaba para justificar los primeros intentos de demostrar la teoría ondulatoria de la luz, el éter, es un medio material, que llenaba el vació esta sustancia permitía las perturbaciones típicas de una onda, de tal forma que el medio perturbado era el éter en ese sentido pudiera atreverme a decir que desde ese punto de vista no había vació en el espacio exterior algo para mi contradictorio.
Según Maxwell como esta formadas la luz y cuales son sus características. El físico escocés James Clark Maxwell en 1865 situó en la cúspide las primitivas ideas de Huygens, aclarando en qué consistían las ondas luminosas. Al desarrollar su teoría electromagnética demostró matemáticamente la existencia de campos electromagnéticos que, a modo de ondas, podían propasarse tanto por el espacio vacío como por el interior de algunas sustancias materiales.
Maxwell identificó las ondas luminosas con sus teóricas ondas electromagnéticas, prediciendo que éstas deberían comportarse de forma semejante a como lo hacían aquéllas. La comprobación experimental de tales predicciones vino en 1888 de la mano del físico alemán Henrich Hertz, al lograr situar en el espacio campos electromagnéticos viajeros, que fueron los predecesores inmediatos de las actuales ondas de radio. De esta manera se abría la era de las telecomunicaciones y se hacía buena la teoría de Maxwell de los campos electromagnéticos.
La diferencia entre las ondas de radio (no visibles) y las luminosas tan sólo radicaban en su longitud de onda, desplazándose ambas a la velocidad de la luz, es decir, a 300 000 km/s. Posteriormente una gran variedad de ondas electromagnéticas de diferentes longitudes de onda fue descubierta, producidas y manejadas, con lo que la naturaleza ondulatoria de la luz quedaba perfectamente encuadrada en un marco más general y parecía definitiva. Sin embargo, algunos hechos experimentales nuevos mostrarían, más adelante, la insuficiencia del modelo ondulatorio para describir plenamente el comportamiento de la luz.
¿Qué descubrimientos hubo al final del siglo XIX, que hicieron renacer la teoría corpuscular de la luz? •
Uno de ellos fue el efecto fotoeléctrico este efecto consiste en que algunos metales como el cesio, por ejemplo, emiten electrones cuando son iluminados por un haz de luz.
El análisis de Einstein reveló que ese fenómeno no podía ser explicado desde el modelo ondulatorio, y tomando como base la idea de discontinuidad planteada con anterioridad por Plank, fue más allá afirmando que no sólo la emisión y la absorción de la radiación se verifican de forma discontinua, sino que la propia radiación es discontinua.
Estas ideas supusieron, de hecho, la reformulación de un modelo corpuscular. Según el modelo de Einstein la luz estaría formada por una sucesión de cuantos elementales que a modo de paquetes de energía chocarían contra la superficie del metal, arrancando de sus átomos los electrones más externos. Estos nuevos corpúsculos energéticos recibieron el nombre de fotones (fotos en griego significa luz).
Las controversias y los antagonismos entre las ideas de Newton y Huygens han dejado paso, al cabo de los siglos, a la síntesis de la física actual. La luz es, por tanto, onda, pero también corpúsculo, manifestándose de uno u otro modo en función de la naturaleza del experimento o del fenómeno mediante el cual se la pretende caracterizar o describir.

Leyes de la reflexión de la luz


Es el cambio de dirección, en el mismo medio, que experimenta un rayo luminoso al incidir oblicuamente sobre una superficie. Para este caso las leyes de la reflexión son las siguientes:
1a. ley: El rayo incidente, el rayo reflejado y la normal, se encuentran en un mismo plano.

2a. ley: El ángulo de incidencia es igual al ángulo de reflexión.



2.Interferencia de la luz


Se manifiesta cuando dos o más ondas se combinan porque coinciden en el mismo lugar del espacio. Cada onda tiene sus crestas y sus valles, de manera que al coincidir en un momento dado se suman sus efectos. Es frecuente que la interferencia se lleva a cabo entre una onda y su propio reflejo.
Interferencia constructiva: cuando dos ondas interfieren, en los puntos en que coinciden las dos crestas se dice que hay interferencia constructiva. En estos puntos se suman las amplitudes de las ondas.
Interferencia destructiva: al inferir dos ondas, en los puntos donde coincide una cresta de una onda con un valle de la otra onda se dice que hay interferencia destructiva. Las amplitudes en este caso se restan y pueden anularse por completo.
Efecto que se produce cuando dos o más ondas se solapan o entrecruzan. Cuando las ondas interfieren entre sí, la amplitud (intensidad o tamaño) de la onda resultante depende de las frecuencias, fases relativas (posiciones relativas de crestas y valles) y amplitudes de las ondas iniciales; Por ejemplo, la interferencia constructiva se produce en los puntos en que dos ondas de la misma frecuencia que se solapan o entrecruzan están en fase; es decir, cuando las crestas y los valles de ambas ondas coinciden. En ese caso, las dos ondas se refuerzan mutuamente y forman una onda cuya amplitud es igual a la suma de las amplitudes individuales de las ondas originales. La interferencia destructiva se produce cuando dos ondas de la misma frecuencia están completamente desfasadas una respecto a la otra; es decir, cuando la cresta de una onda coincide con el valle de otra. En este caso, las dos ondas se cancelan mutuamente. Cuando las ondas que se cruzan o solapan tienen frecuencias diferentes o no están exactamente en fase ni desfasadas, el esquema de interferencia puede ser más complejo.
La luz visible está formada por ondas electromagnéticas que pueden interferir entre sí. La interferencia de ondas de luz causa, por ejemplo, las irisaciones que se ven a veces en las burbujas de jabón. La luz blanca está compuesta por ondas de luz de distintas longitudes de onda. Las ondas de luz reflejadas en la superficie interior de la burbuja interfieren con las ondas de esa misma longitud reflejadas en la superficie exterior. En algunas de las longitudes de onda, la interferencia es constructiva, y en otras destructiva. Como las distintas longitudes de onda de la luz corresponden a diferentes colores, la luz reflejada por la burbuja de jabón aparece coloreada. El fenómeno de la interferencia entre ondas de luz visible se utiliza en holografía e interferometría.
La interferencia puede producirse con toda clase de ondas, no sólo ondas de luz. Las ondas de radio interfieren entre sí cuando rebotan en los edificios de las ciudades, con lo que la señal se distorsiona. Cuando se construye una sala de conciertos hay que tener en cuenta la interferencia entre ondas de sonido, para que una interferencia destructiva no haga que en algunas zonas de la sala no puedan oírse los sonidos emitidos desde el escenario. Arrojando objetos al agua estancada se puede observar la interferencia de ondas de agua, que es constructiva en algunos puntos y destructiva en otros.
Cuando dos ondas de igual naturaleza se propagan simultáneamente por un mismo medio, cada punto del medio sufrirá la perturbación resultante de componer ambas. Este fenómeno de superposición de ondas recibe el nombre de interferencias y constituye uno de los más representativos del comportamiento ondulatorio.
Lo esencial del fenómeno de interferencias consiste en que la suma de las dos ondas supuestas de igual amplitud no da lugar necesariamente a una perturbación doble, sino que el resultado dependerá de lo retrasada o adelantada que esté una onda respecto de la otra. Se dice que dos ondas alcanzan un punto dado en fase cuando ambas producen en él oscilaciones sincrónicas o acompasadas. En tal caso la oscilación resultante tendrá una amplitud igual a la suma de las amplitudes de las ondas individuales, y la interferencia se denomina constructiva porque en la onda resultante se refuerzan los efectos individuales. Si por el contrario las oscilaciones producidas por cada onda en el punto considerado están contrapuestas, las ondas llegan en oposición de fase y la oscilación ocasionada por una onda será neutralizada por la debida a la otra. En esta situación la interferencia se denomina destructiva.

3.Polarización




Los átomos de una fuente de luz ordinaria emiten pulsos de radiación de duración muy corta. Cada pulso procedente de un único átomo es un tren de ondas prácticamente monocromático (con una única longitud de onda).  El vector eléctrico correspondiente a esa onda no gira en torno a la dirección de propagación de la onda, sino que mantiene el mismo ángulo, o acimut, respecto a dicha dirección. El ángulo inicial puede tener cualquier valor. Cuando hay un número elevado de átomos emitiendo luz, los ángulos están distribuidos de forma aleatoria, las propiedades del haz de luz son las mismas en todas direcciones, y se dice que la luz no está polarizada. Si los vectores eléctricos de todas las ondas tienen el mismo ángulo acimutal (lo que significa que todas las ondas transversales están en el mismo plano), se dice que la luz está polarizada en un plano, o polarizada integralmente. Cualquier onda electromagnética puede considerarse como la suma de dos conjuntos de ondas: uno en el que el vector eléctrico vibra formando ángulo recto con el plano de incidencia y otro en el que vibra de forma paralela a dicho plano. Entre las vibraciones de ambas componentes puede existir una diferencia de fase, que puede permanecer constante o variar de forma constante. Cuando la luz está linealmente polarizada, por ejemplo, esta diferencia de fase se hace 0 o 180°. Si la relación de fase es aleatoria, pero una de las componentes es más intensa que la otra, la luz está en parte polarizada. Cuando la luz es dispersada por partículas de polvo, por ejemplo, la luz que se dispersa en un ángulo de 90°. Con la trayectoria original del haz está polarizada en un plano, lo que explica por qué la luz procedente del cenit está marcadamente polarizada.

Para ángulos de incidencia distintos de 0 o 90°, la proporción de luz reflejada en el límite entre dos medios no es igual para ambas componentes de la luz. La componente que vibra de forma paralela al plano de incidencia resulta menos reflejada. Cuando la luz incide sobre un medio no absorbente con el denominado ángulo de Brewster, llamado así en honor al físico británico del siglo XIX David Brewster, la parte reflejada de la componente que vibra de forma paralela al plano de incidencia se hace nula. Con ese ángulo de incidencia, el rayo reflejado es perpendicular al rayo refractado; la tangente de dicho ángulo de incidencia es igual al cociente entre los índices de refracción del segundo medio y el primero.


4.Refracción de la luz


Se denomina refracción luminosa al cambio que experimenta la dirección de propagación de la luz cuando atraviesa oblicuamente la superficie de separación de dos medios transparentes de distinta naturaleza. Las lentes, las máquinas fotográficas, el ojo humano y, en general, la mayor parte de los instrumentos ópticos basan su funcionamiento en este fenómeno óptico.
El fenómeno de la refracción va, en general, acompañado de una reflexión, más o menos débil, producida en la superficie que limita los dos medios transparentes. El haz, al llegar a esa superficie límite, en parte se refleja y en parte se refracta, lo cual implica que los haces reflejado y refractado tendrán menos intensidad luminosa que el rayo incidente. Dicho reparto de intensidad se produce en una proporción que depende de las características de los medios en contacto y del ángulo de incidencia respecto de la superficie límite. A pesar de esta circunstancia, es posible fijar la atención únicamente en el fenómeno de la refracción para analizar sus características.

Las leyes de la refracción

Al igual que las leyes de la reflexión, las de la refracción poseen un fundamento experimental. Junto con los conceptos de rayo incidente, normal y ángulo de incidencia, es necesario considerar ahora el rayo refractado y el ángulo de refracción o ángulo que forma la normal y el rayo refractado.
Sean 1 y 2 dos medios transparentes en contacto que son atravesados por un rayo luminoso en el sentido de 1 a 2 y e1 y e2 los ángulos de incidencia y refracción respectivamente. Lasleyes que rigen el fenómeno de la refracción pueden, entonces, expresarse en la forma:
1.ª Ley. El rayo incidente, la normal y el rayo refractado se encuentran en el mismo plano.
2.ª Ley. (ley de Snell) Los senos de los ángulos de incidencia e1 y de refracción e2 son directamente proporcionales a las velocidades de propagación v1 y v2 de la luz en los respectivos medios.
  
Recordando que índice de refracción y velocidad son inversamente proporcionales la segunda ley de la refracción se puede escribir en función de los índices de refracción en la forma:



5.Difracción de la luz


En física, la difracción es un fenómeno característico de las ondas que se basa en la desviación de estas al encontrar un obstáculo o al atravesar una rendija. La difracción ocurre en todo tipo de ondas, desde ondas sonoras, ondas en la superficie de un fluido y ondas electromagnéticas como la luz visible y las ondas de radio. También sucede cuando un grupo de ondas de tamaño finito se propaga; por ejemplo, por causa de la difracción, un haz angosto de ondas de luz de unláser deben finalmente divergir en un rayo más amplio a una cierta distancia del emisor.

Descripción: http://bits.wikimedia.org/static-1.23wmf4/skins/common/images/magnify-clip.png
Comparación entre los patrones de difracción e interferencia producidos por una doble rendija (arriba) y cinco rendijas (abajo).
La interferencia se produce cuando la longitud de onda es mayor que las dimensiones del objeto, por tanto, los efectos de la difracción disminuyen hasta hacerse indetectables a medida que el tamaño del objeto aumenta comparado con la longitud de onda.
En el espectro electromagnético los rayos X tienen longitudes de onda similares a las distancias interatómicas en la materia. Es posible por lo tanto utilizar la difracción de rayos X como un método para explorar la naturaleza de los cristales y otros materiales con estructura periódica. Esta técnica se utilizó para intentar descubrir la estructura del ADN, y fue una de las pruebas experimentales de su estructura de doble hélice propuesta por James Watson y Francis Crick en 1953. La difracción producida por una estructura cristalina verifica la ley de Bragg.
Debido a la dualidad onda-corpúsculo característica de la mecánica cuántica es posible observar la difracción de partículas como neutrones oelectrones. En los inicios de la mecánica cuántica este fue uno de los argumentos más claros a favor de la descripción ondulatoria que realiza lamecánica cuántica de las partículas subatómicas.



PROPAGACIÓN DE LA LUZ

PROPAGACIÓN DE LA LUZ




La luz emitida por una fuente luminosa es capaz de llegar hasta otros objetos e iluminarlos. Este recorrido de la luz desde la fuente luminosa hasta los objetos, se denomina rayo luminoso.


      La luz se propaga siempre:

  • En línea recta.
  • En todas las direcciones.
  •  A gran velocidad, 300.000 km/sg     




VELOCIDAD DE LA LUZ



VELOCIDAD DE LA LUZ





El primer valor confiable de la velocidad de la luz no pertenece al método terrestre -de los pulsos de luz- ya descrito. Ese valor se dedujo a partir de observaciones astronómicas en que se estudiaban los tiempos de rotación de los satélites de Júpiter. Para la comunidad científica del siglo XIX, determinar la velocidad de un rayo de luz que viaja entre dos puntos en la Tierra se mantenía aún como un desafío.

Alrededor de 1850, y casi en forma simultánea, se implementaron en Francia dos técnicas muy similares para medir por primera vez en “tierra” el valor de la velocidad de la luz. Detalles de estas mediciones sepuedenverjuntoalosexperimentosaquípresentados.El primero en tener éxito fue Armande Fizeau (1819-1896). Fizeau utilizó una rueda dentada a través de la cual un rayo de luz salía y volvía después de rebotar en un espejo lejano. Su método reportó un valor algo mayor que el aceptado actualmente.
Luego, unos meses más tarde, Jean Foucault (1819-1868) utilizó espejos rotatorios (en lugar de la rueda). Foucault reportó a la Academia de Ciencias que la velocidad de la luz en el agua era menor que enelaire.La técnica de espejos rotatorios fue refinada posteriormente por otros investigadores, entre ellos Albert Michelson (1852-1931), quien en 1878, en Maryland (Estados Unidos), midió el valor de c en forma más precisa empleando una mayor separación entre los espejos.


martes, 26 de noviembre de 2013

PRESENTACION


ÓPTICA

Es la rama de la física que se encarga de   estudiar la propagación y el comportamiento de la luz 

Interpretar con claridad el mundo que nos rodea  debe ser una de nuestras principales  obsesiones, es por ello que uno de los objetivos principales de este trabajo es despertar en el lector ese interés por ese maravilloso mundo de la ciencia. Para un estudiante es interesante tener claras las ideas, poder desarrollarlas  y llevarlas a la práctica, de allí la importancia de este trabajo que está basado en aunar esfuerzos para potenciar en el estudiante todo ese cúmulo de ideas, imaginaciones y sueños.  

Este es un material presentado como una ayuda educativa  el cual contiene lo básico y necesario en  lo relacionado con la unidad de óptica, la cual es fundamental en el proceso de los estudiantes para presentar sus pruebas de estado.
En su estructura encontrará temas y subtemas de la unidad, los cuales se desarrollaron basados en conceptos, imágenes y en ocasiones videos.
Esperamos poder involucrar al lector en procesos cognitivos, que le permitan cristalizar sus buenas ideas.